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THE JACOBIAN ANALYSIS OF COLOR IMAGE MACHINES
I. CONTINUOUS RELATIONSHIP BETWEEN CONTROL AND COLOR
BY

RICHARD D. JUDAY AND RICHARD W. NEWTON

Abstract

.In making color imagery from numerical imagery, the details of
the quantitative relationship between the vector of control values
and the color actually produced are often overlooked. Most of the
attention has gone into manipulations of the vector data
(stretchings, rotations, etc.) prior to their being convééted to
color controls, with incomplete consideration for the effects the
color image machine will then cause. "Density linearization" is a
common method of setting up color machines; in it, a logarithmic
relationship is induced between radiance and the control producing
it. Density linearization, even if done on only one axis at a time,
is a step towards achieving uniformity of color vs. control. How-
ever, the off-axis effects are usually neglected, and the visi-
bility of one data component's changes can be masked by other
components'. An idealized continuous color image machine is mod-
elled, and the undesirable effects of the off—axis behavior are
shown by means of the Jacobian matrix.

One subsequent paper will extend the Jaéobian analysis to dis-

crete machines such as dot-matrix printers, and another will offer




the cure for the effects shown here.

A. INTRODUCTION

Simply stated, the objective of a color image machine is to
make visible to a human analyét the information contained in
numerical data that are used to control the machine. Little is to
be found in the image-processing literature on the effects that the
machine has in that process, it apparently being assumed that if
the data are treated so as to have the appropriate statistics
(uncorrelatedness, large variances, etc.), then the data components
can be mapped affinely into the control channels of a machine and
acceptable color imagery will result. For examples see quura et
al. (1978), Soha et al. (1976), Tajima (1983), and othé;s. The
common transforms (HSI, linear stretch, histogram equalization,
decorrelation stretching, etc.) all myopically consider data
transformations only to the point of their being entered into the
controls of the machine. However, as will be shown, even a machine
that is noise-free, continuously addressable in its control vector
domain, and has exactly the ordinary ideal relationship (e.q.
Catmull, 1979) between control and spectral radiance, will
nonetheless distort the relationships that éxist in the numerical
data, if we have a normally-sighted human interpret the data. The
color gamut of the machine is ordinarily sufficiently large that
the important data vector differences are visually discriminable
when thus converted to color, and the imagery will pass a visual

examination that is not strict with respect to comparative color



differences for various data vector differences. If, however, the
comparative color differences are to be analyzed in the visual
imagery, then either the data will have to be treated to account
for the effects the color machine will have on them, or else the
machine will have to be set up“to minimize those effects. The
purpose of this paper is to show the presence of the effects in
even the best-intentioned color machine.

We will consistently use the term "covariance"™ in the multi-
variate statistical sense--the expectation of a vector less its
mean times the transpose of that difference. We note that covar-
iance is not the same as information, but we posit that the ideal
color image machine is one that conveys covariance in itstcontrol
space uniformly into perceived covariance in the colors seén‘by the
analyst looking at the image. That is, we assume that the oper-
ations done on the data prior to their being displayed condition
them so that their covariances are what are desired to be seen. For
the purposes of this paper, we will ignore adjacency effects,
small-field tritanopia, and other aspects of color theory that
consider a neighborhood rather than a point in the visual field.
With those preliminaries we can use a body of data, theory, and
algorithms developed by color metricians to éxamine the behavior of
a color image machine. We refer the reader to Wyszecki and Stiles
(1982) for the colorimetry necessary in the rest of.the paper.

We note that the term "density linearization” is somewhat
loose usage; more accurately one would perhaps use "affine density"”

or "first-order density".



B. THE MODEL OF A CONTINUOUS ADDITIVE MACHINE

By a model of a color machine we mean the relationship between
the color produced at a location in the output image and the vector
of controls at the corresponding location in the input image. We
will assume that the relationship>is not dependent on position in
the image, time, or other confounding parameters. The input vector
is taken as the usual controls, they being r, g, b (red, green, and
blue) all lying in the closed interval zero to unity. We will refer
to the space of control vectors as K-space and to the space of
numerically expressed colors as C-space.

We take our ideal machine as one that is strictly color-
additive--the light that is produced from each of the channels (as
by emission from a CRT or reflection from hardcopy fiim) is
literally added in the sense of Grassman's laws. (No CRT or film
machine is physically so clean; only a physical system that proj-
ects colored images into coincidence onto a screen realizes it.)
Suppose that the r control moderates the red primary light, g the
green, and b the blue. The spectral radiances of the primaries add,
as do the CIE tristimulus values. What remains is to specify the
relationship between the control value and the strength of the
primary light it causes. We will examine two such; the first has
radiance proportional to control, and the second has the logarithm

of radiance proportional to control.

1. Linear in radiance

1
1= Z Y3 Ki (1)

Ler,g,b i



in which T is the tristimulus vector; X, Y, and Z are the CIE
tristimulus values; Kj is the i-th component of the control vector;

and the i-subscripted tristimulus values are the result of full
activation of that primary. For definiteness, we define MTV as the

matrix of tristimulus values

Xg Xg Xp 58.79 17.92  18.31
MTV = Yp Yo Y - 28.96 60.58 10.46 (2)
Zr Zg Zg 0.0  6.83 102.02

which corresponds to lights of the NTSC-defined chromaticities
(Pratt, 1978) for broadcast television, balanced to match';he CIE
D65 illuminant when all controls are fully activated. These values

were used in the calculations for the figures. Then

I = MIV o

=

(3)

2. Linear in density

This condition is the one most often sought in setting up
machines; it is predicated on the Weber-Fechner law, that constant
ratios of radiances cause equally-perceptible differences in
brightness. Indeed, one-dimensional scales in which the logarithm
of radiance is equally spaced present themselves pleasingly to the
eye as visually uniform scales. (But we shall see that the fully

three-dimensional aspects are less salutary.)



T = MIV » {10**[-Dp..(1-K;)1} (4)

Note that if we have density linearization, we cannot turn any
primary all the way off, as that would correspond to infinite

density (recall that density is the negative base-10 logarithm of

the transmittance or reflectance). In the above equation, Dp,y

gives the maximum density that is achieved, zero being the minimum,
for K; in its domain. E.g., for Dp., = 1, only a factor of ten is

possible for variations in the radiance of any primary.

If the proviso of the Introduction is accepted, that the data
to be displayed have been conditioned so that their covariénce is
what is desired to be made visible, we can extrapolate to séy thét
the ratio of visible discriminability to covariance should be
constant throughout the region of data space that is converted into
color. That is, we wish for one component of the data vector not to
affect the visibility of the variance in another component. To
allow an examination of whether this is the case we will need some
of the concepts of UCS systems.

A UCS (uniform chromaticity scale) system is a numerical color
coordinate system in which the Euclidean metric gives a usable
approximation to the visibility of color difference. The familiar
"straight-line" distance between the points that fepresent colors
in the UCS space is roughly proportional to the minimum number of

barely-perceptible color changes along the set of all color se-

quences that have the two colors at opposite ends. For a detailed



description of line-element theory as applied to color metrics, see
Wyszecki and Stiles, 1982). For the purposes of this paper we need
only to know that the CIELUV color system is such a transformation
of the tristimulus values calculated above that the Euclidean
distance between colors so transformed is nearly proportional to
how strongly different they appear. The transformation from
tristimulus values to the CIELUV coordinates L*, u* and v* is given

in the Appendix. The Euclidean metric of color difference is

AE = N (AL%)2 + (Au¥)2 + (Av#)2

By it and the machine model, we calculate the visible color
difference resulting from a control vector change. The unit of
color difference is the JND, which stands for "just noticeable

difference".

C. THE JACOBIAN MATRIX

Once we have a model for the machine, we can formulate a
powerful tool for analyzing the relationship between the data
vectors and the colors they evoke. That tool is the Jacobian
matrix.

The Jacobian matrix here is exactly as described in any
advanced calculus text; viz., it is the matrix ofbpartial deriv-
atives of the UCS color coordinates with respect to the control
values. We will assume that the required derivatives exist for our

ideal machine, and we will also assume that we are examining small



enough control differences (and resulting color differences) that
the first-order partial derivatives adequately describe the 1local
behavior. Given an analytic model of our machine it is straight-
forward to derive the analytic form of the Jacobian matrix, but in
fact we took the derivatives by finite differences for the figures
shown here. We took small differences in control values and the
model-calculated color differences in the CIELUV coordinates; their
ratio gives the derivatives. Step sizes were chosen small enough to
stay locally within linear behavior, large enough to avoid trouble
with digital computation precision.

The Jacobian matrix transforms a small vector difference in
control space into the small vector difference in color space. In
advanced calculus, the theory of random variables, etc., iﬁsﬂdeter—
minant gives the ratio of differential volumes in two spaces mapped
between by a function. The integral over control space of the
Jacobian determinant is somewhat similar to the CRP (color
representing power) of Tajima (1983), which gives the number of
discernably different colors producible by the machine. The

equation defining the Jacobian is:

J dK | (5)

2

with J the Jacobian matrix

oC;

i
Jij = (6)
oK




where C is the CIELUV color vector (L* u* v*)' and K is the control
vector (r g b)'. (We reserve R, G, and B for the tristimulus
primaries to distinguish them from r, g, and b, the control values
input to the machine. See the Appendix.) In our case, the units of
the Jacobian determinant are cubié JND's per cubic input unit, and
it is a measure of how much color volume is used per unit volume in
control space. The Jacobian determinant, as well as other
quantities based on the Jacobian matrix, are functions of the con-
trol vector. That is, it varies as the individual components of the
(r g b)' control vector change. We will have use of the norm of the

matrix-vector product.

Il ga 1l =vC'C o

A

where H is a unit vector and

C=JH (8)
Then [|JH|| is the amount of color change, measured in JND's, for
each unit of control vector difference in the direction H. Again,

note that ||JH|| i1s a function of both direction H and the

control vector K at which J is evaluated.

D. THE JACOBIAN ELLIPSE
We will observe the locus in color space that corresponds to a
circular locus in the control space. In that way we show the color

difference resulting from a control difference of constant mag-



nitude and varying direction, and we will see that even in a
machine mathematically idealized for its on-axis behavior, there is
substantial departure from visual uniformity if we do not take into
proper account its off-axis behavior. We will take H as the unit-
length control vector encircling ébntro} vector K, and C as the
color difference vector resulting from H. Inasmuch as Equation (8)
is a linear form, a plane in K-space maps into a plane in C-space,
and generally a circle in K-space becomes an ellipse in C-space. If
the machine were uniform, then the circles in K-space would map to
circles in C-space. Now the normals to the circles in K-space do
not necessarily map to normals of the ellipses in C-space, and also
the family of actual normals to the ellipses will not generally all
be parallel even if the family of K-space circles have‘p;rallel
normals. So there is considerable difficulty in displaying the
C-space ellipses in a K-space section, let alone actually un-
derstanding what is being displayed. In Figures 2a, 3a, and 4a, we
have attempted such a display. For circles centered at a grid of
K-space locations we have calculated the C-space ellipses. The
ellipses' sizes are all scaled by the same factor, and they are
brought into the K-space centered on their respective grid
locations. The rotational position of the eilipses is specified by
projecting the L* axis onto each ellipse and then placing that
direction vertically in the Figure. The horizontal direction thus
corresponds to a solely chromatic shift, and the vertical direction
will generally comprise some chromatic shift in addition to all the

lightness shift. As a data-difference vector swings in a circle

10



around its data center, the color vector moves in its ellipse, the
discriminability between the center color and the color on the
ellipse being proportional to the distance from the center to the
point on the ellipse. The important feafure is the considerable
eccentricities of the ellipses..ihe ratio of semi-major axis to
semi-minor axis is the ratio by which the discriminability varies.
For all the accuracy of a machine set up mathematically per the
criteria very often sought in practice, the effects of the
machine's off-axis behavior and the experimentally observed color
discrimination of the human eye cause enormous variations in the

visibilities of data differences themselves having a common size.

E. THE JACOBIAN PEANUT

In an attempt to avoid some of the interpretation difficulties
of the Jacobian ellipse display, we have created the graph we call
the Jacobian peanut. To make it, a unit data-difference vector is
swung in a circle around a control center, just as in making the
Jacobian ellipses. The unit data-difference vector is multiplied by
the norm of the corresponding color-difference vector. The polar
plot around each control center has its angle in the direction of
the data-difference vector and its radiué proportional to the
observed color difference. The shapé of the plot bears a
resemblance to the seed for which it is named, with the varying
eccentricity of the Jacobian ellipse determining how strongly
pinched the waist of the peanut is. In the Jacobian peanut,

direction has more directly discernible import than in the ellipse;
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it is the actual direction of the data difference vector. In the
peanut plot, angles are preserved at the expense of color-
difference fidelity between pairs of data difference vectors. In
the ellipse plot the pair fidelity is maintained at the expense of
angular fidelity; you can't have iﬁ both ways.

The shape of the peanut plot is made plausible by noting the
relative azimuthal angles in the K-space circle and in the Jacobian
ellipse. A typical ellipse is shown in Figure 5. As the data-
difference vector swings around at constant rate, the corresponding
point on the Jacobian ellipse spends a larger amount of time near
the semi-major axis of the ellipse than near the semi-minor axis.
The points crowded together near the semi-major apex are indi-
vidually well discriminable from the center color, though tﬁey are
not so well mutually discriminable. As the data-difference vector
in K—spacé swings through the direction of minimum dis-
criminability, the angle in the Jacobian ellipse races through the
semi-minor axis and its lesser norm. The result is a peanut shape
for the polar plot.

Another plausibility argument is based on considering the pea-
nut plot character if only one direction in the K-space circle gave
any visible color difference. The Jacobian ellipse collapses to a
line. The sensitive component of a K-space difference vector circle
has cosine dependence, which plots as a circle paséing through the
origin. Color difference is an absolute magnitude quantity, and
abs(cos(*)) makes a figure-8. Indeed the highly eccentric ellipses

make peanuts that are nearly figure-8's.
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F. DISCUSSION OF THE GRAPHS

In Figure 1 we show that density linearization is a step
toward making a color machine uniform; the tick marks occur at more
nearly even intervals for densit§ linearization than they do for
radiance linearization. This is particularly true away from the
origin's vicinity. To make the Figure, a point is slid along a
control axis away from the control space origin and marks are
placed at UCS intervals of 30 JND as measured from the origin. The
tick marks for the density 1linearizations do not begin at as low

values of control as for radiance linearization, particularly for

the larger Dy, - A larger value of Dj,, allows more different

colors to be expressed. This is illustrated by the larger values of

the maximum color distance at the "fully-on" edge of Figure 1.
Smaller Dp., means that all three primaries remain "on" to a larger

degree, so one cannot make the colors near the edges of the Maxwell
triangle, as the opposite primary desaturates the color by
remaining on. Radiance linearization permits the entirety of the
Maxwell triangle to be made.

In Figures 2 through 5 we extend the on-axis results of Figure
1 into the plane section of the control cube having red control of
0.5. (Similar results are obtained for sections of constant green
or constant blue control, so they are not shown here.)

Referencing Figure 2 we see that sensitivity to a control is
uniformly reduced as the other controls are turned on; the ellipses

and peanuts shrink as we move to the right or upward. (A similar
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effect ensues from changing the red control, not shown here.) In
Figure 3b there is little sensitivity to a blue change in the lower
right corner (the peanut lies on its side), and as the blue value
is increased (move toward the upper right corner) both blue and
green differential sensitivitieé‘increase. In the upper right
corner there is more sensitivity to a change in the blue/green
balance (principally a chromatic shift) than there is to the

bluet+green sum (principally a lightness shift). The effect is more

strongly present in Figure 4b with its larger Dnax-

The major point is that the behavior is a function of both
control variables; the visibility of a green control change is
affected by the value of the red control.

In Figure 5 we see the root of the peanut behavior for the
directional sensitivity plots; as a control-difference vector
swings smoothly through a circle the color-difference vectors
linger near the semi-major extremes of the Jacobian ellipse. The
radials in the Figure are at uniformly spaced azimuthsvin the
control space, yet they bunch near the apices of the ellipse.
Those clustered points are individually well distinguishable from
the center, but they are not well distinguishable from each other.
That feature is apparent in the ellipse plots but is obscured in

the peanut plots, so both kinds of plots have been presented.
G. APPENDIX
The color machine has primary tristimulus values in matrix

form

14



Xr Xg Xp 58.
M=| Yg Yo Yy | = [ 28.
Zr Zg Zg 0.

chosen to give

the NTSC chromaticities

79 17.92 18.31
96 60.58 10.46
0 6.83 102.02

XR Xg ¥B 0.67 0.21 0.14

YR Yo YB = 0.33 0.71 0.18
and balance to the D65 illuminant I, = (X5 Yo Z4)° with
chromaticity

Xo 0.3128

Yo 0.3292

from which it follows that

Xo 95.
T, =|¥,] - [ vo0.
Zo 108.

For radiance linearization

r
K=lg
b
with 0 £ r <1, 0 £ g<b,
vector
X
T =1Y]=MZK.
Z

018
000
842

the control vector

1 produces the tristimulus

15



For density linearization, define
ag = 10 * * [ - (1 - 1) Dp,]

and similarly for a ag and ap, with Dphax thus the largest density
(defined as the negative of the logjg of radiance ratio) producible

by the machine ~- identical Dnhax for all three primaries is

assumed. Defining

ar
A = ag
ap
then
T = MA

We choose the CIELUV coordinate system to express a color;

neglecting the expressions for extremely low lightnesses,

where
u' = 4X
X + 15Y + 32
v' = oY

X + 15Y + 32

and u,, Vv, are the values gotten from I,.

16



Finally,

* 1/3
L 116 L) - 16
YO
u* 13 L* (u' - uo'>

V* 13 L* (v' - Voi)

We thus have a(n invertible) relationship between the control

vector K and the color vector C. We selected the CIELUV system as
being reasonably uniform and having a chromaticity diagram.
The Jacobian matrix has as its (i, j) element the partial

derivative

which was approximated by the ratio of finite differences.
A small sphere in K - space becomes an ellipsoid in C - space
according to
d¢ = J dK
and the ellipsoid is given by the quadratic form

dc T ac drT a7 g gk

dr T gk drT dK

For a full volume examination (contrasted with the plane sections
done in this paper) one observes the eigenvectors of the full-rank
(for any practical color machine) symetric matrix R = JTJ. The

eigenvectors of R point in the directions of the axes of the
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ellipsoid, but the eigenvalues of R are not directly usable. A
symmetric decomposition of R can produce usable values on the
diagonal, but in practice we obtain the lengths of the ellipsoid

diagonals as follows.

Let E = (e; ep e3) be the matrix of orthonormal eigenvectors
of R corresponding to the eigenvalues of R, )\1,2 >\2 2 /\3. Then

Pi =11 Jejll
is the length of the ith semi-axis of the ellipsoid, and we can

calculate the maximum eccentricity

of any ellipse that is a plane section of the ellipsoid. Enax is a

function of K and is a measure of the color machine's non-unifor-
mity without regard to a pre-determined orientation of a cutting
plane.

The ellipses shown here result from oriented small circles in
the control space, however, rather than from spheres and ellip-
soids.

A

Let n be a unit vector normal to the circle [for a circle in a

A

plane of constant red control value, n = (1 0 0)', etc.}, and let

A

t and u complete an orthonormal basis in K-space. Let K, be the

center of the circle. The following algorithm creates the ellipses
in C-space and carries them to K-space with (arbitrarily) the pro-

jection of 1* into the C - space ellipse aligned with t.

18



zZ W) =J (n t u)
Y
B =AA1l}o
0
0
H=<32§
83
N - u
s 1
A T
T (d 2)(Zw)
Q:%% -—-2 A
(@7 w)
AT
z
b= -a 5=
d W
. dXe
~A A D
B=(d ¢ %)
-(-\- ._:\B-‘(i cos
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Plot

K- K_+E- (2L +0f,)

for a suitable scale factor F.

The peanuts are rather simpler. One merely plots

K=K+ F-1Tellpe

éz = 4; cos B + CZ sin B b é:[.‘>>7LTF]

)

again, for a suitable scale factor F.
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FIGURE CAPTIONS

Figure 1. Tick marks at intervals of 30 JND (just-noticeable
rdifference; see text) plotted for the red, greeen, and blue axes.
Maximum color difference as measured from the origin is given. The
color machine is linearized in radiance or in density. Density
linearization causes more even placement of the ticks. The number

of distinguishable colors on an axis is proportional to its number

of ticks, so a lower Dpax reduces the number of different colors.

Figure 2. Jacobian ellipses and peanuts for radiance
linearization; the plane is red = 0.5. 1In comparison with density
linearization (see the next two Figures) the :iargest
discriminability occurs at low values of color control,
eccentricity of ellipses is small, and there is low contrast over

much of the area.

Figure 3. Jacobian ellipses and peanuts for density linearization,

taken in the red = 0.5 plane and with Dp.. =1.0. In comparison

with the larger Dp,, of the next figure, the ellipses have less

eccentricity and less variation in their size. Less total color
volume is available, however, so the cost is lower maximum

contrast.

Figure 4. Jacobian ellipses and peanuts for density linear-
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ization, taken in the red = 0.5 plane with Dp,, = 2.0. The large

color range available with the large D _,, is at the cost of

considerable eccentricity and variation in size of the ellipses.
Note in this and the previous two figures that sensitivity to
changes in a control value is strongly a function of the other

control value.

Figure 5. An enlargement of a Jacobian ellipse showing radials
that are at equal azimuth intervals in control space. This ellipse
is the image in color space of a small circle in control space.
Visual discriminability is largest along those control space
directions that transform near the major axes of the elliééé. The
bunching of the radials is responsible for the shape of the

Jacobian peanuts.
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